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1. Prevent or reduce the likelihood of failures [Failure 
Prevention]

2. Identify failures and their causes when they occur 
[Failure identification] and [Reliability Monitoring]

3. Fix the failures when they occur [Maintenance]

Principle Areas of Reliability Engineering

Saria, Subbaswamy, Tutorial: Safe and Reliable Machine Learning. 01.29.2019



Saria, S. and Subbaswamy, A. (2019). Tutorial: Safe and Reliable Machine Learning. ACM 
Conference on Fairness, Accountability, and Transparency. https://arxiv.org/abs/1904.07204



Inadequate Data

Buolamwini, Joy, and Timnit Gebru. "Gender shades: Intersectional accuracy disparities in commercial gender 
classification." Conference on Fairness, Accountability and Transparency. 2018.
http://gendershades.org/

http://gendershades.org/


Adversarial Blindspots

•  
 
 

• Model becomes confidently wrong

• Failure complementary to dataset shift: despite 
proactive correction, model can be susceptible to this.

I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. In International Conference on Learning Representations 
(ICLR), 2015. 



Zech, John R., et al. "Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional study." PLoS 
medicine 15.11 (2018): e1002683.

• Goal: Use lung X-rays to diagnose pneumonia

• Developed a model using a large training dataset. Measured performance on this data. 
Deemed high-quality using evaluation on held-out dataset.

• When the model is evaluated beyond that dataset, your model performance degrades.

Dataset Shift



Zech, John R., et al. "Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional study." PLoS 
medicine 15.11 (2018): e1002683.

• X-ray has style features (tokens or inlaid text)

• Encode geometry (orientation), color scheme, etc.



Types of Dataset Shift
• A primary challenge: the accuracy and reliability of an ML model is 

dependent on the training context and the deployment context

• Context: Aspects of dataset that ML model uses to make predictions

• Equipment: CT scanner manufacturer, image settings, …

• Population: Patient demographics, disease prevalence, …

• Behavior: Timing/frequency of lab tests and treatments



Lactate Measurement 
Times

• Goal: Use labs to predict risk of an adverse event

• Trained on data from 2011-2013 and tested on 2014, it performed very well. When 
tested on 2015, performance deteriorated dramatically.

• Instance of learning a dependency that does not generalize across changes in provider 
ordering patterns. 

Schulam, P and Saria, S. “Reliable Decision Support using Counterfactual Models”, Neural Information Processing Systems, 2017.
Subbaswamy, A and Saria S. “I-SPEC: An End-to-End Framework for Learning Transportable, Shift-Stable Models.” https://arxiv.org/pdf/2002.08948.pdf.

Dataset Shift Robustness is Critical: 
Healthcare Practice Evolves Over Time

https://arxiv.org/pdf/2002.08948.pdf


Shifts in Data Hurt Generalization
• In order to prevent failures, can we learn models that are 

stable to shifts?

Proactive                         Reactive
Use unlabeled 
samples from target 
distribution to optimize 
model for target 
environment 

Failure prevention 
paradigm: learn  
model to protect 
from likely 
problematic shifts

To start see:
Subbaswamy, A, and Saria, S. "Counterfactual Normalization: Proactively Addressing Dataset Shift and Improving Reliability Using Causal Mechanisms." 
Uncertainty in Artificial Intelligence (UAI), (2018).
Storkey, Amos. "When training and test sets are different: characterizing learning transfer." Dataset shift in machine learning (2009): 3-28.
Quionero-Candela, Joaquin, et al. "Dataset Shift in Machine Learning." (2009).



Overview: Proactive Methods
1. Represent shifts using graphs
2. Specs to identify which shifts to protect from
3. Proactive Learning (graphs, specs) ==>  

preprocessing step that determines which 
parts of the distribution to fit

4. Use existing learning techniques to fit these  
components

5. Guarantees: 
1. Optimality
2. Soundness/Completeness

Subbaswamy, A, and Saria, S. "Counterfactual Normalization: Proactively Addressing Dataset Shift and Improving Reliability Using Causal 
Mechanisms." Uncertainty in Artificial Intelligence (UAI), (2018).
Subbaswamy, A. et al. “Learning Predictive Models That Transport." International Conference on Artificial Intelligence and Statistics. (2019).  
Schulam, P, and Suchi S. "Reliable decision support using counterfactual models." Advances in Neural Information Processing Systems (2017).

Proactive                         
Failure prevention 
paradigm: learn  
model to protect 
from likely 
problematic shifts



Pneumonia Example
• Goal: Diagnose T from F and X

T: Pneumonia 
D: Department 
F: Style features 
X: Lung X-ray



• Goal: Diagnose T from F and X
Data Generating Process

• Ex: Effect of pneumonia and style on X-ray image does not change. 
Ex: Protocols/preferences for style features differ from department to 
department or even technician to technician

• Some of these mechanisms will be stable across environments, others are 
unstable and more likely to change

Stable

T: Pneumonia 
D: Department 
F: Style features 
X: Lung X-ray

VariesStable
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[sepsis: continually evolving draft…]



Algorithm: Graph Surgery Estimator
Input: Graph w/ invariance specs (selection vars)
Output: Data conditionals to fit, how to combine

Algorithm: Surgery 
Estimator

output

Subbaswamy, A et al. “Learning Predictive Models That Transport." International Conference on Artificial Intelligence and Statistics. (2019).
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C D

T

F

E

G
S

S

S
S

Target: T 
Observed vars: A, B, C, D

+



Lactate Measurement 
Times

• Goal: Use labs to predict risk of an adverse event

• Trained on data from 2011-2013 and tested on 2014, it performed very well. When 
tested on 2015, performance deteriorated dramatically.

• Instance of learning a dependency that does not generalize across changes in provider 
ordering patterns. 

Schulam, P and Saria, S. “Reliable Decision Support using Counterfactual Models”, Neural Information Processing Systems, 2017.
Subbaswamy, A and Saria S. “I-SPEC: An End-to-End Framework for Learning Transportable, Shift-Stable Models.” https://arxiv.org/pdf/2002.08948.pdf.

I-SPEC: Invariance Specifications

https://arxiv.org/pdf/2002.08948.pdf


Learn Structure of Invariance Spec

Subbaswamy, A and Saria S. “I-SPEC: An End-to-End Framework for Learning Transportable, Shift-Stable Models.” https://arxiv.org/pdf/2002.08948.pdf.
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https://arxiv.org/pdf/2002.08948.pdf


Declare Desired Invariances

dataset_id mortality

age

aids hem_malig
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admit_typeheart_rate
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• Graph suggests shifts that occurred across datasets

• Model developers complete invariance spec by declaring desired invariances

• E.g., declare we want stability to shifts lab ordering patterns



• Stable models have more consistent performance across sites

• Naive evaluation on a single dataset is overly optimistic

• Evaluation on multiple datasets doesn’t tell you how the datasets differ

I-SPEC Implications

Subbaswamy, A and Saria S. “I-SPEC: An End-to-End Framework for Learning Transportable, Shift-Stable Models.” https://arxiv.org/pdf/2002.08948.pdf.

https://arxiv.org/pdf/2002.08948.pdf


• More consistent risk predictions regardless of training population.

• Stable predictions yield stable decisions.

I-SPEC Implications

Subbaswamy, A and Saria S. “I-SPEC: An End-to-End Framework for Learning Transportable, Shift-Stable Models.” https://arxiv.org/pdf/2002.08948.pdf.

https://arxiv.org/pdf/2002.08948.pdf


Full Technical Paper on Framework

https://arxiv.org/pdf/
2002.08948.pdf.

https://arxiv.org/pdf/2002.08948.pdf
https://arxiv.org/pdf/2002.08948.pdf


General Overview Centered Around Healthcare Applications

https://academic.oup.com/
biostatistics/article/
21/2/345/5631850

http://www.apple.com
http://www.apple.com
http://www.apple.com


Thank you!


