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Principle Areas of Reliability Engineering

1. Prevent or reduce the likelihood of failures [Failure
Prevention]

2. ldentify failures and their causes when they occur
[Failure identification] and [Reliability Monitoring]

3. Fix the failures when they occur [Maintenance)]

Saria, Subbaswamy, Tutorial: Safe and Reliable Machine Learning. 01.29.2019
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ABSTRACT

This document serves as a brief overview of the “Safe and Reliable
Machine Learning” tutorial given at the 2019 ACM Conference on
Fairness, Accountability, and Transparency (FAT* 2019). The talk
slides can be found here: https://bit.ly/2Gfsukp, while a video of
the talk is available here: https://youtu.be/FGLOCkKkC4KmE, and
a complete list of references for the tutorial here: https://bit.ly/
2GdLPme.

Reference Format:
Suchi Saria and Adarsh Subbaswamy. 2019. Tutorial: Safe and Reliable Ma-
chine Learning. In ACM Conference on Fairness, Accountability, and Trans-
parency (FAT* 2019).

1 MOTIVATION AND OUTLINE

Machine Learning driven decision-making systems are starting
to permeate modern society—for example, to decide bank loans,
criminals’ incarceration, clinical decision-making, and the hiring of
new employees. As we march towards a future where these systems
underpin most of society’s decision-making infrastructure, it is
critical for us to understand the principles that will help us engineer
for reliability. In this tutorial, we (1) give an overview of issues
to consider when designing for reliability, (2) draw connections
to concepts of fairness, transparency, and interpretability, and (3)
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(1) Failure Prevention: Prevent or reduce the likelihood of
failures.

(2) Failure Identification & Reliability Monitoring: Iden-
tify failures and their causes when they occur.

(3) Maintenance: Fix or address the failures when they occur.

In what follows we will consider each of the principles of reli-
ability in turn, summarizing key approaches when they exist and
speculating about open problem areas. The focus of this tutorial is
on supervised learning (i.e., classification and regression). For an
overview of issues associated with reinforcement learnings see [1].

3 FAILURE PREVENTION

To prevent failures, ideally we could proactively identify likely
sources of error and develop methods that correct for these in ad-
vance. This requires us to explicitly reason about common sources
of errors and issues. We broadly categorize four sources of failures
and discuss them each: 1) bad or inadequate data, 2) differences
or shifts in environment, 3) model associated errors, and 4) poor
reporting.

3.1 Bad or Inadequate Data

Inadequate data can cause errors related to differential performance.
For example, when a particular class or subpopulation is under-

Saria, S. and Subbaswamy, A. (2019). Tutorial: Safe and Reliable Machine Learning. ACM

Conference on Fairness, Accountability, and Transparency. https:/arxiv.org/abs/1904.07204
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Inadequate Data

Overall Accuracy on all Subjects in Pilot Parlaiments Benchmark
(2017)

93.7%

90.0%

87.9%

Buolamwini, Joy, and Timnit Gebru. "Gender shades: Intersectional accuracy disparities in commercial gender
classification." Conference on Fairness, Accountability and Transparency. 2018.

http://gendershades.org/
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Adversarial Blindspots
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e Failure complementary to dataset shift: despite
proactive correction, model can be susceptible to this.

I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. In International Conference on Learning Representations

(ICLR), 2015.



Dataset Shift

Goal: Use lung X-rays to diagnose pneumonia

Developed a model using a large training dataset. Measured performance on this data.
Deemed high-quality using evaluation on held-out dataset.

When the model is evaluated beyond that dataset, your model performance degrades.

Zech, John R., et al. "Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional study." PLoS
medicine 15.11 (2018): €1002683.



X-ray has style features (tokens or inlaid text)

Encode geometry (orientation), color scheme, etc.

Zech, John R., et al. "Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional study." PLoS
medicine 15.11 (2018): e1002683.



Types of Dataset Shift

e A primary challenge: the accuracy and reliability of an ML model is
dependent on the training context and the deployment context
e Context: Aspects of dataset that ML model uses to make predictions
e Equipment: CT scanner manufacturer, image settings, ...
* Population: Patient demographics, disease prevalence, ...

 Behavior: Timing/frequency of lab tests and treatments



Dataset Shift Robustness is Critical:

Healthcare Practice Evolves Over Time
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- Trained on data from 2011-2013 and tested on 2014, it performed very well. When
tested on 2015, performance deteriorated dramatically.
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- Instance of learning a dependency that does not generalize across changes in provider

ordering patterns.

Schulam, P and Saria, S. “Reliable Decision Support using Counterfactual Models”

, Neural Information Processing Systems, 2017.

Subbaswamy, A and Saria S. “I-SPEC: An End-to-End Framework for Learning Transportable, Shift-Stable Models.” https://arxiv.org/pdf/2002.08948.pdf.
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Shifts in Data Hurt Generalization

* |n order to prevent failures, can we learn models that are
stable to shifts?

Reactive Proactive

Use unlabeled Failure prevention
samples from target paradigm: learn

distribution to optimize model to protect
model for target from likely
environment problematic shifts

To start see:

Subbaswamy, A, and Saria, S. "Counterfactual Normalization: Proactively Addressing Dataset Shift and Improving Reliability Using Causal Mechanisms."
Uncertainty in Artificial Intelligence (UAI), (2018).

Storkey, Amos. "When training and test sets are different: characterizing learning transfer." Dataset shift in machine learning (2009): 3-28.
Quionero-Candela, Joaquin, et al. "Dataset Shift in Machine Learning." (2009).



Overview: Proactive Methods

1. Represent shifts using graphs

2. Specs to identify which shifts to protect from

Proactive

Eailure or Nt 3. Proactive Learning (graphs, specs) ==
allu _e P .eve on preprocessing step that determines which

paradigm: learn parts of the distribution to fit

model to protect
from likely
problematic shifts

4. Use existing learning techniques to fit these
components

5. Guarantees:

1. Optimality

2. Soundness/Completeness

Subbaswamy, A, and Saria, S. "Counterfactual Normalization: Proactively Addressing Dataset Shift and Improving Reliability Using Causal
Mechanisms." Uncertainty in Artificial Intelligence (UAI), (2018).

Subbaswamy, A. et al. “Learning Predictive Models That Transport." International Conference on Artificial Intelligence and Statistics. (2019).
Schulam, P, and Suchi S. "Reliable decision support using counterfactual models." Advances in Neural Information Processing Systems (2017).



Pneumonia Example

-+ Goal: Diagnose T from F and X

T: Pneumonia
D: Department
F: Style features
X: Lung X-ray




Data Generating Process

Goal: Diagnose T from F and X

Varies

T: Pneumonia
D: Department
F: Style features
X: Lung X-ray

\ Stable

Some of these mechanisms will be stable across environments, others are
unstable and more likely to change

Ex: Effect of pneumonia and style on X-ray image does not change.
EX: Protocols/preferences for style features differ from department to
department or even technician to technician



More complex domain...
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More complex domain...
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Algorithm: Graph Surgery Estimator

Input: Graph w/ invariance specs (selection vars)
Output: Data conditionals to fit, how to combine

Target: T
Observed vars: A, B, C, D
P(T|A, B,C, D)
P(A|C, D)
P(D|C)
T output P(C)
Algorithm: Surgery .

Estimator +

Combination o< ) ~ P(T|A, B,C, D)P(A|C,D)P(D|C)P(C)
A

Subbaswamy, A et al. “Learning Predictive Models That Transport." International Conference on Artificial Intelligence and Statistics. (2019).



I-SPEC: Invariance Specifications
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- Goal: Use labs to predict risk of an adverse event

- Trained on data from 2011-2013 and tested on 2014, it performed very well. When
tested on 2015, performance deteriorated dramatically.

- Instance of learning a dependency that does not generalize across changes in provider
ordering patterns.

Schulam, P and Saria, S. “Reliable Decision Support using Counterfactual Models”, Neural Information Processing Systems, 2017.
Subbaswamy, A and Saria S. “I-SPEC: An End-to-End Framework for Learning Transportable, Shift-Stable Models.” https://arxiv.org/pdf/2002.08948.pdf.
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Learn Structure of Invariance Spec

Subbaswamy, A and Saria S. “I-SPEC: An End-to-End Framework for Learning Transportable, Shift-Stable Models.” https://arxiv.org/pdf/2002.08948 .pdf.
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Declare Desired Invariances

Graph suggests shifts that occurred across datasets
Model developers complete invariance spec by declaring desired invariances

E.g., declare we want stability to shifts lab ordering patterns



I-SPEC Implications

AUROC at Different Hospitals

All models trained at Hospital 1

Hospital 1 Hospital 2 Hospital 3

AUROC

Unst'able Conse'rvative I-SlsEC Unst‘able Conse'rvative I-SisEC Unst'able Conse'rvative I-SI5EC
Method

- Stable models have more consistent performance across sites
- Nalive evaluation on a single dataset is overly optimistic

- Evaluation on multiple datasets doesn’t tell you how the datasets differ

Subbaswamy, A and Saria S. “I-SPEC: An End-to-End Framework for Learning Transportable, Shift-Stable Models.” https://arxiv.org/pdf/2002.08948 .pdf.
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I-SPEC Implications

Rank Correlation of Predictions Made on Same Population

Unstable - =

Conservative -

Method

I-SPEC -

0.4 0.6 0.8
Spearman’s p

More consistent risk predictions regardless of training population.

Stable predictions yield stable decisions.

Subbaswamy, A and Saria S. “I-SPEC: An End-to-End Framework for Learning Transportable, Shift-Stable Models.” https://arxiv.org/pdf/2002.08948 .pdf.
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Full Technical Paper on Framework

[-SPEC: An End-to-End Framework for Learning
Transportable, Shift-Stable Models

Adarsh Subbaswamy' and Suchi Saria’

! Department of Computer Science; Johns Hopkins University

Abstract

Shifts in environment between development and deployment cause classical super-
vised learning to produce models that fail to generalize well to new target distributions.
Recently, many solutions which find invariant predictive distributions have been de-
veloped. Among these, graph-based approaches do not require data from the target
environment and can capture more stable information than alternative methods which
find stable feature sets. However, these approaches assume that the data generating
process is known in the form of a full causal graph, which is generally not the case. In
this paper, we propose I-SPEC, an end-to-end framework that addresses this shortcoming
by using data to learn a partial ancestral graph (PAG). Using the PAG we develop an
algorithm that determines an interventional distribution that is stable to the declared
shifts; this subsumes existing approaches which find stable feature sets that are less
accurate. We apply I-SPEC to a mortality prediction problem to show it can learn a model
that is robust to shifts without needing upfront knowledge of the full causal DAG.

1 Introduction

One of the primary barriers to the deployment of machine learning models in safety-critical
applications is unintended behaviors arising at deployment that were not problematic
during model development. For example, predictive policing systems have been shown to
be vulnerable to predictive feedback loops that cause them to disproportionately overpatrol
certain neighborhoods (Lum and Isaac, 2016; Ensign et al., 2018), and a patient triage
model erroneously learned that asthma lowered the risk of mortality in pneumonia patients

ps: iv.org/p . . ;.
https://arxiv.org/pdf/ (Caruana et al., 2015). At the heart of many such unintended behaviors are shifts in

2002.08948 .pdf.
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General Overview Centered Around Healthcare Applications

Biostatistics (2020) 21, 2, pp. 345-352
doi:10.1093/biostatistics/kxz041
Advance Access publication on November 19, 2019

https://academic.oup.com/
biostatistics/article/
21/2/345/5631850

From development to deployment: dataset shift,
causality, and shift-stable models in health AI

ADARSH SUBBASWAMY

Department of Computer Science, Johns Hopkins University, 160 Malone Hall, 3400 N. Charles Street,
Baltimore, MD, USA

SUCHI SARIA*

Department of Computer Science,; Department of Applied Math & Statistics, and Department of Health
Policy & Management, Johns Hopkins University, 160 Malone Hall, 3400 N. Charles Street, Baltimore,
MD, USA

ssaria@cs.jhu.edu

Keywords: Causal inference; Dataset shift; Generalizability; Machine learning.

The deployment of machine learning (ML) and statistical models is beginning to transform the practice
of healthcare, with models now able to help clinicians diagnose conditions like pneumonia and skin
cancer, and to predict which hospital patients are at risk of adverse events such as septic shock. A major
concern, however, is that model performance is heavily tied to details particular to the dataset the model
was developed on—even slight deviations from the training conditions can result in wildly different
performance. For example, when researchers trained a model to diagnose pneumonia from chest X-rays
using data from one health system, but evaluated on data from an external health system, they found the
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Engineering for Reliability

Failure Test-time

Prevention Monitoring Maintenance

1. Prevent or reduce the likelihood of failures or unexpected behaviors (e.g.
learning methods)

2. ldentify failures and their causes when they occur [Failure identification] and
[Reliability Monitoring]
3. Fix the failures when they occur [Maintenance]

Saria, Subbaswamy, Tutorial: Safe and Reliable Machine Learning.
ACM Fairness, Accountability and Transparency, 2019.

Thank you!



